Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 502
Filter
1.
Front Cell Infect Microbiol ; 12: 1075717, 2022.
Article in English | MEDLINE | ID: mdl-36683674

ABSTRACT

Trypanosoma cruzi, the causal agent of Chagas disease, has coexisted with humans for thousands of years. Therefore, the parasite has developed several mechanisms of antigenic variability that has allowed it to live inside the cells and evade the host immune response. Since T. cruzi displays an intracellular cycle-stage, our research team focused on providing insights into the CD8+ T cells immune response in chronic Chagas cardiomyopathy. We began our work in the 2000s studying parasite antigens that induce natural immune responses such as the KMP11 protein and TcTLE, its N-terminal derived peptide. Different approaches allowed us to reveal TcTLE peptide as a promiscuous CD8+ T cell epitope, able of inducing multifunctional cellular immune responses and eliciting a humoral response capable of decreasing parasite movement and infective capacity. Next, we demonstrated that as the disease progresses, total CD8+ T cells display a dysfunctional state characterized by a prolonged hyper-activation state along with an increase of inhibitory receptors (2B4, CD160, PD-1, TIM-3, CTLA-4) expression, an increase of specific terminal effector T cells (TTE), a decrease of proliferative capacity, a decrease of stem cell memory (TSCM) frequency, and a decrease of CD28 and CD3ζ expression. Thus, parasite-specific CD8+ T cells undergo clonal exhaustion, distinguished by an increase in late-differentiated cells, a mono-functional response, and enhanced expression of inhibitory receptors. Finally, it was found that anti-parasitic treatment induces an improved CD8+ T cell response in asymptomatic individuals, and a mouse animal model led us to establish a correlation between the quality of the CD8+ T cell responses and the outcome of chronic infection. In the future, using OMICs strategies, the identification of the specific cellular signals involved in disease progression will provide an invaluable resource for discovering new biomarkers of progression or new vaccine and immunotherapy strategies. Also, the inclusion of the TcTLE peptide in the rational design of epitope-based vaccines, the development of immunotherapy strategies using TSCM or the blocking of inhibitory receptors, and the use of the CD8+ T cell response quality to follow treatments, immunotherapies or vaccines, all are alternatives than could be explored in the fight against Chagas disease.


Subject(s)
CD8-Positive T-Lymphocytes , Chagas Cardiomyopathy , Persistent Infection , Trypanosoma cruzi , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Epitopes, T-Lymphocyte , Persistent Infection/immunology , Persistent Infection/parasitology , Trypanosoma cruzi/immunology
2.
Front Immunol ; 12: 782891, 2021.
Article in English | MEDLINE | ID: mdl-34925364

ABSTRACT

Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-ß, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chagas Cardiomyopathy/drug therapy , Class I Phosphatidylinositol 3-Kinases/metabolism , Nitroimidazoles/pharmacology , Animals , Animals, Newborn , Anti-Inflammatory Agents/therapeutic use , Chagas Cardiomyopathy/immunology , Chromones/pharmacology , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Disease Models, Animal , Female , Humans , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Morpholines/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Nitroimidazoles/therapeutic use , Primary Cell Culture , RAW 264.7 Cells
3.
Front Immunol ; 12: 761795, 2021.
Article in English | MEDLINE | ID: mdl-34868005

ABSTRACT

CD4-CD8- (double-negative, DN) T cells are critical orchestrators of the cytokine network associated with the pathogenic inflammatory response in one of the deadliest cardiomyopathies known, Chagas heart disease, which is caused by Trypanosoma cruzi infection. Here, studying the distribution, activation status, and cytokine expression of memory DN T-cell subpopulations in Chagas disease patients without cardiac involvement (indeterminate form-IND) or with Chagas cardiomyopathy (CARD), we report that while IND patients displayed a higher frequency of central memory, CARD had a high frequency of effector memory DN T cells. In addition, central memory DN T cells from IND displayed a balanced cytokine profile, characterized by the concomitant expression of IFN-γ and IL-10, which was not observed in effector memory DN T cells from CARD. Supporting potential clinical relevance, we found that the frequency of central memory DN T cells was associated with indicators of better ventricular function, while the frequency of effector memory DN T cells was not. Importantly, decreasing CD1d-mediated activation of DN T cells led to an increase in IL-10 expression by effector memory DN T cells from CARD, restoring a balanced profile similar to that observed in the protective central memory DN T cells. Targeting the activation of effector memory DN T cells may emerge as a strategy to control inflammation in Chagas cardiomyopathy and potentially in other inflammatory diseases where these cells play a key role.


Subject(s)
CD4 Antigens/immunology , CD8 Antigens/immunology , Chagas Cardiomyopathy/immunology , Chagas Disease/immunology , Memory T Cells/immunology , Trypanosoma cruzi/immunology , Adult , Aged , Animals , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Cells, Cultured , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/parasitology , Chagas Disease/metabolism , Chagas Disease/parasitology , Chlorocebus aethiops , Electrocardiography , Female , Humans , Interleukin-10/immunology , Interleukin-10/metabolism , Male , Memory T Cells/metabolism , Middle Aged , Trypanosoma cruzi/physiology , Ventricular Function, Left/immunology , Ventricular Function, Left/physiology , Vero Cells
4.
PLoS Negl Trop Dis ; 15(11): e0009978, 2021 11.
Article in English | MEDLINE | ID: mdl-34784372

ABSTRACT

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 µg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 µg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. CONCLUSIONS/SIGNIFICANCE: AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.


Subject(s)
Chagas Cardiomyopathy/drug therapy , Docosahexaenoic Acids/administration & dosage , Animals , Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Chronic Disease/drug therapy , Disease Models, Animal , Female , Heart/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/immunology , Nitroimidazoles/administration & dosage , Parasite Load , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/immunology , Trypanosoma cruzi/physiology
5.
Infect Genet Evol ; 95: 105079, 2021 11.
Article in English | MEDLINE | ID: mdl-34509648

ABSTRACT

Chronic Chagas cardiomyopathy (CCC) is an acquired inflammatory cardiomyopathy triggered by the protozoan Trypanosoma cruzi infection. Although microvascular and neurogenic dysfunction and inflammation with persistent parasite presence in the heart may play a major pathogenetic role, little is known about the overall picture of gene co-expression regulating CCC. In this study, we aimed to explore the key biological pathways, hub genes and the landscope of infiltrating immune cells associated with inflammation in chronic Chagas cardiomyopathy. A weighted gene co-expression network analysis (WGCNA) was conducted based on the gene expression profiles from patients with and without chronic Chagas cardiomyopathy (GSE84796). Twelve coexpression modules were identified from the top 25% variant genes. Among them, the turquoise and black module were significantly positively correlated with CCC, which were highly enriched in Th1 and Th2 cell differentiation, the Cytokine-cytokine receptor interaction,NF-kappa B signaling pathway and T cell receptor signaling pathway. In addition, four genes (TBX21, ZAP70,IL2RB and CD69) were selected as candidate hub genes. Gene expression for hub genes were higher in CCC tissues compared to tissues from healthy controls. Additionally, gene set enrichment analysis (GSEA) analysis showed that high expressions of these hub genes were significantly correlated with interferon α response and interferon γ response. The microarray dataset GSE41089 further confirmed that although CD69 was not detected, the expression of TBX21, IL2RB and ZAP70 was also significantly up-regulated in the CCC mice compared to controls. We further studied the immune cells infiltration in CCC patients with CIBERSORT. The fraction of Mast cells activated,T cells CD8 and T cells gamma delta were significantly increased in CCC patients compared with control. Our research provides a more effective understanding of the pathogenesis of CCC and could help in future strategies for new diagnostic and therapeutic approaches for CCC patients.


Subject(s)
Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/immunology , Computational Biology , Trypanosoma cruzi/physiology , Animals , Chronic Disease , Humans , Mice
6.
Cytokine ; 148: 155711, 2021 12.
Article in English | MEDLINE | ID: mdl-34592495

ABSTRACT

Heart disease is a major cause of death worldwide. Chronic Chagas cardiomyopathy (CCC) caused by infection with Trypanosoma cruzi leading to high mortality in adults, and rheumatic heart disease (RHD), resulting from infection by Streptococcus pyogenes affecting mainly children and young adults, are amongst the deadliest heart diseases in low-middle income countries. Despite distinct etiology, the pathology associated with both diseases is a consequence of inflammation. Here we compare systemic immune profile in patients with these cardiopathies, to identify particular and common characteristics in these infectious heart diseases. We evaluated the expression of 27 soluble factors, employing single and multivariate analysis combined with machine-learning approaches. We observed that, while RHD and CCC display higher levels of circulating mediators than healthy individuals, CCC is associated with stronger immune activation as compared to RHD. Despite distinct etiologies, univariate analysis showed that expression of TNF, IL-17, IFN-gamma, IL-4, CCL4, CCL3, CXCL8, CCL11, CCL2, PDGF-BB were similar between CCC and RHD, consistent with their inflammatory nature. Network analysis revealed common inflammatory pathways between CCC and RHD, while highlighting the broader reach of the inflammatory response in CCC. The final multivariate model showed a 100% discrimination power for the combination of the cytokines IL-12p70, IL-1Ra, IL-4, and IL-7 between CCC and RHD groups. Thus, while clear immunological distinctions were identified between CCC and RHD, similarities indicate shared inflammatory pathways in these infectious heart diseases. These results contribute to understanding the pathogenesis of CCC and RHD and may impact the design of immune-based therapies for these and other inflammatory cardiopathies that may also share immunological characteristics.


Subject(s)
Chagas Cardiomyopathy/blood , Chagas Cardiomyopathy/immunology , Chemokines/blood , Cytokines/blood , Intercellular Signaling Peptides and Proteins/blood , Adult , Aged , Cluster Analysis , Female , Humans , Male , Middle Aged , Protein Interaction Maps , Rheumatic Heart Disease/blood , Rheumatic Heart Disease/immunology , Solubility
7.
Cell Immunol ; 369: 104427, 2021 11.
Article in English | MEDLINE | ID: mdl-34482259

ABSTRACT

Chagas disease is an important disease of the heart. Lipoxins have important regulatory functions in host immune response (IR). Herein, we examined whether the receptor for lipoxin A4, the formyl peptide receptor (FPR) 2, had an effect on Trypanosoma cruzi infection. In vitro, FPR2 deficiency or inhibition improved the activity of macrophages against T. cruzi. In vivo, during the acute phase, the absence of FPR2 reduced parasitemia and increased type 2 macrophages, type 2 neutrophils, and IL-10-producing dendritic cells. Moreover, the acquired IR was characterized by greater proportions of Th1/Th2/Treg, and IFNγ-producing CD8+T cells, and reductions in Th17 and IL-17-producing CD8+T cells. However, during the chronic phase, FPR2 deficient mice presented and increased inflammatory profile regarding innate and acquired IR cells (Th1/IFN-γ-producing CD8+T cells). Notably, FPR2 deficiency resulted in increased myocarditis and impaired heart function. Collectively, our data suggested that FPR2 is important for the orchestration of IR and prevention of severe T. cruzi-induced disease.


Subject(s)
Chagas Cardiomyopathy/immunology , Myocarditis/immunology , Receptors, Formyl Peptide/immunology , Animals , Chagas Cardiomyopathy/complications , Disease Models, Animal , Female , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology
8.
J Leukoc Biol ; 109(1): 233-244, 2021 01.
Article in English | MEDLINE | ID: mdl-32450615

ABSTRACT

Chronic Chagas cardiomyopathy is the main infectious myocarditis worldwide. Almost 30% of Trypanosoma cruzi infected individuals develop slow and progressive myocarditis that leads to ventricular dilation and heart failure. Heart transplantation is an established, valuable therapeutic option for end-stage Chagas disease patients. Although the pathophysiology of Chagas disease has been addressed for decades by numerous groups, the cardiac immunologic mechanisms involved in the progression of clinical manifestation are still unknown. Growing evidence demonstrates that hypoxia-inducible factor (HIF)-1α plays indispensable roles in driving immune response by triggering the expression of CD73 purinergic ecto-enzyme. Purinergic system controls the duration and magnitude of purine signals directed to modulate immune cells through the conversion of extracellular ATP (microbicide/proinflammatory) to the immunoregulatory metabolite adenosine. In the present work, we described that infiltrating leukocytes within cardiac explants from patients with end-stage Chagas cardiomyopathy up-regulated HIF-1α and CD73 expression. Moreover, the number of HIF-1α+ and CD73+ leukocytes positively correlated with the myocarditis severity and the local parasite load. Furthermore, we demonstrated a direct relationship between tissue parasite persistence and the influx of immune cells to the infected hearts, which ultimately determine the severity of the myocarditis. These findings provide evidence that CD73-dependent regulatory pathways are locally triggered in the myocardium of patients with end-stage Chagas disease.


Subject(s)
5'-Nucleotidase/biosynthesis , Chagas Cardiomyopathy/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Leukocytes/immunology , Myocarditis/immunology , Adult , Chagas Cardiomyopathy/complications , Chagas Cardiomyopathy/pathology , Female , GPI-Linked Proteins/biosynthesis , Humans , Leukocytes/metabolism , Male , Middle Aged , Myocarditis/etiology , Myocarditis/pathology , Myocardium/immunology , Myocardium/pathology
9.
Front Immunol ; 11: 572178, 2020.
Article in English | MEDLINE | ID: mdl-33072115

ABSTRACT

IL-10 is an anti-inflammatory cytokine that plays a significant role in the modulation of the immune response in many pathological conditions, including infectious diseases. Infection with Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, results in an ongoing inflammatory response that may cause heart dysfunction, ultimately leading to heart failure. Given its infectious and inflammatory nature, in this work we analyzed whether the lack of IL-10 hinders the anti-inflammatory effects of fenofibrate, a PPARα ligand, in a murine model of Chagas heart disease (CHD) using IL-10 knockout (IL-10 KO) mice. Our results show fenofibrate was able to restore the abnormal cardiac function displayed by T. cruzi-infected mice lacking IL-10. Treatment with fenofibrate reduced creatine kinase (CK) levels in sera of IL-10 KO mice infected with T. cruzi. Moreover, although fenofibrate could not modulate the inflammatory infiltrates developing in the heart, it was able to reduce the increased collagen deposition in infected IL-10 KO mice. Regarding pro-inflammatory mediators, the most significant finding was the increase in serum IL-17. These were reduced in IL-10 KO mice upon fenofibrate treatment. In agreement with this, the expression of RORγt was reduced. Infection of IL-10 KO mice increased the expression of YmI, FIZZ and Mannose Receptor (tissue healing markers) that remained unchanged upon treatment with fenofibrate. In conclusion, our work emphasizes the role of anti-inflammatory mechanisms to ameliorate heart function in CHD and shows, for the first time, that fenofibrate attains this through IL-10-dependent and -independent mechanisms.


Subject(s)
Chagas Cardiomyopathy/drug therapy , Fenofibrate/therapeutic use , Hypolipidemic Agents/therapeutic use , Interleukin-10/metabolism , Myocardium/pathology , Trypanosoma cruzi/physiology , Trypanosomiasis/drug therapy , Animals , Cells, Cultured , Chagas Cardiomyopathy/immunology , Creatine Kinase/blood , Disease Models, Animal , Humans , Interleukin-10/genetics , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Trypanosomiasis/immunology , Wound Healing
10.
Front Immunol ; 11: 1386, 2020.
Article in English | MEDLINE | ID: mdl-32733459

ABSTRACT

Background: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is the most important clinical consequence of T. cruzi infection, while the others remain asymptomatic (ASY). IFN-γ and IFN-γ-producing Th1-type T cells are increased in peripheral blood and CCC myocardium as compared to ASY patients, while the Th1-antagonizing cytokine IL-10 is more expressed in ASY patients. Importantly IFN-γ-producing Th1-type T cells are the most frequent cytokine-producing T cell subset in CCC myocardium, while expression of Th1-antagonizing cytokines IL-10 and IL-4 is unaltered. The control of IFN-γ production by Th1-type T cells may be a key event for progression toward CCC. A genetic component to disease progression was suggested by the familial aggregation of cases and the association of gene polymorphisms with CCC development. We here investigate the role of gene polymorphisms (SNPs) in several genes involved in the control of IFN-γ production and Th1 T cell differentiation in CCC development. Methods: We studied a Brazilian population including 315 CCC cases and 118 ASY subjects. We assessed 35 Tag SNPs designed to represent all the genetic information contained in the IL12B, IL10, IFNG, and IL4 genes. Results: We found 2 IL12 SNPs (rs2546893, rs919766) and a trend of association for a IL10 SNP (rs3024496) to be significantly associated with the ASY group. these associations were confirmed by multivariate analysis and allele tests. The rs919766C, 12rs2546893G, and rs3024496C alleles were associated to an increase risk to CCC development. Conclusions: Our data show that novel polymorphisms affecting IL12B and IL10, but not IFNG or IL4 genes play a role in genetic susceptibility to CCC development. This might indicate that the increased Th1 differentiation and IFN-γ production associated with CCC is genetically controlled.


Subject(s)
Chagas Cardiomyopathy/genetics , Interleukin-10/genetics , Interleukin-12 Subunit p40/genetics , Cell Differentiation , Chagas Cardiomyopathy/immunology , Chronic Disease , Disease Progression , Genetic Predisposition to Disease , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interleukin-4/genetics , Polymorphism, Single Nucleotide , Th1 Cells/immunology
11.
PLoS Negl Trop Dis ; 14(5): e0007980, 2020 05.
Article in English | MEDLINE | ID: mdl-32433643

ABSTRACT

Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.


Subject(s)
Chagas Cardiomyopathy/metabolism , Animals , Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Female , Humans , Mice , Mice, Inbred C57BL , Proteome/genetics , Proteome/metabolism , Proteomics , Signal Transduction , Trypanosoma cruzi/physiology
12.
Front Immunol ; 11: 488, 2020.
Article in English | MEDLINE | ID: mdl-32318058

ABSTRACT

Chronic Chagas disease cardiomyopathy (CCC) is the most frequent and severe form of this parasitic disease. CCC is caused by a progressive inflammation in the heart, resulting in alterations that can culminate in heart failure and death. The use of dendritic cells (DCs) appears as an option for the development of treatments due to their important role in regulating immune responses. Here, we investigated whether tolerogenic cells (tDCs) could interfere with the progression of CCC in an experimental model of Chagas disease. The tDCs were generated and characterized as CD11b+ CD11c+ cells, low expression of MHC-II, CD86, CD80, and CD40, and increased expression of PD-L. These cells produced low levels of IL-6 and IL-12p70 and higher levels of IL-10, compared to mature DCs (mDCs). Interestingly, tDCs inhibited lymphoproliferation and markedly increased the population of FoxP3+ Treg cells in vitro, compared to mature DCs. In a mouse model of CCC, treatment with tDCs reduced heart inflammation and fibrosis. Furthermore, tDCs treatment reduced the gene expression of pro-inflammatory cytokines (Ifng and Il12) and of genes related to cardiac remodeling (Col1a2 and Lgals3), while increasing the gene expression of IL-10. Finally, administration of tDCs, increased the percentage of Treg cells in the hearts and spleens of chagasic mice. Ours results show that tolerogenic dendritic cells have therapeutic potential on CCC, inhibiting disease progression.


Subject(s)
Chagas Cardiomyopathy/therapy , Chagas Disease/therapy , Dendritic Cells/immunology , Immunotherapy, Adoptive/methods , Myocardium/pathology , T-Lymphocytes, Regulatory/immunology , Trypanosoma cruzi/physiology , Animals , Antigen Presentation , Cells, Cultured , Chagas Cardiomyopathy/immunology , Chagas Disease/immunology , Cytokines/metabolism , Dendritic Cells/transplantation , Disease Models, Animal , Fibrosis , Humans , Immune Tolerance , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL
13.
PLoS Pathog ; 16(4): e1008474, 2020 04.
Article in English | MEDLINE | ID: mdl-32315358

ABSTRACT

Trypanosoma cruzi (T. cruzi) is the etiological agent of Chagas cardiomyopathy. In the present study, we investigated the role of extracellular vesicles (Ev) in shaping the macrophage (Mφ) response in progressive Chagas disease (CD). We purified T. cruzi Ev (TcEv) from axenic parasite cultures, and T. cruzi-induced Ev (TEv) from the supernatants of infected cells and plasma of acutely and chronically infected wild-type and Parp1-/- mice. Cultured (Raw 264.7) and bone-marrow Mφ responded to TcEV and TEv with a profound increase in the expression and release of TNF-α, IL-6, and IL-1ß cytokines. TEv produced by both immune (Mφ) and non-immune (muscle) cells were proinflammatory. Chemical inhibition or genetic deletion of PARP1 (a DNA repair enzyme) significantly depressed the TEv-induced transcriptional and translational activation of proinflammatory Mφ response. Oxidized DNA encapsulated by TEv was necessary for PARP1-dependent proinflammatory Mφ response. Inhibition studies suggested that DNA-sensing innate immune receptors (cGAS>>TLR9) synergized with PARP1 in signaling the NFκB activation, and inhibition of PARP1 and cGAS resulted in >80% inhibition of TEv-induced NFκB activity. Histochemical studies showed intense inflammatory infiltrate associated with profound increase in CD11b+CD68+TNF-α+ Mφ in the myocardium of CD wild-type mice. In comparison, chronically infected Parp1-/- mice exhibited low-to-moderate tissue inflammation, >80% decline in myocardial infiltration of TNF-α+ Mφ, and no change in immunoregulatory IL-10+ Mφ. We conclude that oxidized DNA released with TEv signal the PARP1-cGAS-NF-κB pathway of proinflammatory Mφ activation and worsens the chronic inflammatory pathology in CD. Small molecule antagonists of PARP1-cGAS signaling pathway would potentially be useful in reprogramming the Mφ activation and controlling the chronic inflammation in CD.


Subject(s)
Chagas Disease/metabolism , Extracellular Vesicles/metabolism , Macrophage Activation/immunology , Macrophages/immunology , NF-kappa B/metabolism , Nucleotidyltransferases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Macrophages/metabolism , Male , Mice , Mice, Knockout , NF-kappa B/immunology , Nucleotidyltransferases/immunology , Poly (ADP-Ribose) Polymerase-1/immunology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/immunology , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/pathogenicity , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
14.
J Immunol ; 204(6): 1571-1581, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32060134

ABSTRACT

T cell-mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas' disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite-host interactions hampers the identification and characterization of T cell-activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients' T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas' disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas' disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.


Subject(s)
Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Chagas Cardiomyopathy/immunology , Epitopes, T-Lymphocyte/immunology , Trypanosoma cruzi/immunology , Antigens, Protozoan/metabolism , Argentina , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Chagas Cardiomyopathy/blood , Chagas Cardiomyopathy/parasitology , Computer Simulation , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/metabolism , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Immunity, Cellular , Immunologic Memory , Interferon-gamma Release Tests , Lymphocyte Activation , Male , Trypanosoma cruzi/metabolism
15.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165658, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31904415

ABSTRACT

Chagas disease is currently endemic to 21 Latin-American countries and has also become a global concern because of globalization and mass migration of chronically infected individuals. Prophylactic and therapeutic vaccination might contribute to control the infection and the pathology, as complement of other strategies such as vector control and chemotherapy. Ideal prophylactic vaccine would produce sterilizing immunity; however, a reduction of the parasite burden would prevent progression from Trypanosoma cruzi infection to Chagas disease. A therapeutic vaccine for Chagas disease may improve or even replace the treatment with current drugs which have several side effects and require long term treatment that frequently leads to therapeutic withdrawal. Here, we will review some aspects about sub-unit vaccines, the rationale behind the selection of the immunogen, the role of adjuvants, the advantages and limitations of DNA-based vaccines and the idea of therapeutic vaccines. One of the main limitations to advance vaccine development against Chagas disease is the high number of variables that must be considered and the lack of uniform criteria among research laboratories. To make possible comparisons, much of this review will be focused on experiments that kept many variables constant including antigen mass/doses, type of eukaryotic plasmid, DNA-delivery system, mice strain and sex, lethal and sublethal model of infection, and similar immunogenicity and efficacy assessments.


Subject(s)
Antigens, Protozoan/immunology , Chagas Cardiomyopathy/prevention & control , Protozoan Vaccines/immunology , Research Design , Trypanosoma cruzi/immunology , Animals , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Disease Models, Animal , Female , Humans , Immunogenicity, Vaccine , Male , Mice , Protozoan Vaccines/administration & dosage , Sex Factors , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
16.
Acta Trop ; 202: 105242, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31669531

ABSTRACT

The lack of useful tools for detection the impact of treatment during the follow-up of chronic Chagas disease treated patients difficult the adequate care to the affected population. The objective of this study was to evaluate the functional response of CD8+ T lymphocyte population, critical for the control of Trypanosoma cruzi infection, as a possible cellular biomarker of treated Chagas disease patients. Thus, we analyzed the antigen-specific CD8+ T-cell response before and after benznidazole treatment in asymptomatic (indeterminate) and cardiac chronic Chagas disease patients. A marked dysfunctional process of the CD8+ T cell population was found in patients with an advanced pathology. Thus, the cardiac patients have a higher co-expression of inhibitory receptors and a lower antigen-specific multifunctional capacity compared with that of asymptomatic patients. Remarkably, benznidazole treatment partially reverses this functional exhaustion process of CD8+ T cells in both asymptomatic and cardiac Chagas disease patients. Thus, the co-expression of inhibitory molecules tends to be reduced after benznidazole treatment, mainly in asymptomatic patients, finding a significant drop in the expression of inhibitory receptors such as PD-1 and 2B4. In addition, the multifunctional antigen-specific response of CD8+ T cells is enhanced after treatment in chronic patients. An increase in the subset of cells with cytotoxic capacity and production of the IFN-γ cytokine was also observed in both treated asymptomatic and cardiac chronic Chagas disease patients. The results derived from this study show the improvement of the functional capacity of CD8+ T cells after treatment which could be have a positive effect on parasitic control. In addition, the phenotypic and functional profile of the CD8+ T cells described could serve as a tool for monitoring the impact of benznidazole treatment.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Chagas Disease , Costimulatory and Inhibitory T-Cell Receptors/metabolism , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/immunology , Chagas Disease/drug therapy , Chagas Disease/immunology , Chronic Disease , Cytokines/blood , Humans , Nitroimidazoles/therapeutic use , Programmed Cell Death 1 Receptor/blood , Signaling Lymphocytic Activation Molecule Family/blood , Trypanocidal Agents/therapeutic use
17.
Rev Soc Bras Med Trop ; 52: e20190386, 2019.
Article in English | MEDLINE | ID: mdl-31800924

ABSTRACT

INTRODUCTION: Chronic chagasic cardiopathy (CCC) is essentially a dilated cardiomyopathy in which a subacute, but constant chronic inflammatory process causes progressive destruction of the heart tissue. The action of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and anti-inflammatory cytokines, like interleukin IL-10 and IL-17, plays a fundamental role in the immunopathogenesis and evolution of disease. Early anti-congestive therapy, aimed at changing the morbidity and mortality rate, has been shown to reduce disease progression and to alter patients' immune response pattern. METHODS: This cross-sectional study aimed to evaluate the profile of Th1 and Th17 cytokines and IL-17, TNF-α, and IFN-γ expressions in different stages of CCC. Forty patients affected by chronic Chagas disease were divided into different groups according to the stage of the pathology. In agreement with the Brazilian consensus on Chagas disease, patients were classified as presenting an undetermined form, a cardiac form and a digestive form. Serum IFN-γ, TNF-α, IL-10, and IL-17 were evaluated. RESULTS: Lower serum IFN-γ concentrations were detected in patients receiving angiotensin-converting enzyme inhibitors (p = 0.0182), but not in those using angiotensin receptor blockers (p = 0.0783). Patients using amiodarone and aldosterone antagonist presented higher serum TNF-α concentrations (p = 0.0106 and 0.0187, respectively). IL-10 and IL-17 levels did not differ between the study groups (p = 0.7273 and p = 0.6697, respectively). CONCLUSIONS: These results suggest that the cytokine profile and disease progression are altered by anti-congestive medications commonly prescribed for CCC.


Subject(s)
Chagas Cardiomyopathy/immunology , Cytokines/blood , Adult , Aged , Chagas Cardiomyopathy/blood , Chagas Cardiomyopathy/drug therapy , Chronic Disease , Cross-Sectional Studies , Cytokines/immunology , Disease Progression , Female , Humans , Male , Middle Aged
18.
PLoS Negl Trop Dis ; 13(7): e0007597, 2019 07.
Article in English | MEDLINE | ID: mdl-31356587

ABSTRACT

CD8+ T lymphocytes play an important role in controlling infections by intracellular pathogens. Chemokines and their receptors are crucial for the migration of CD8+ T-lymphocytes, which are the main IFNγ producers and cytotoxic effectors cells. Although the participation of chemokine ligands and receptors has been largely explored in viral infection, much less is known in infection by Trypanosoma cruzi, the causative agent of Chagas disease. After T. cruzi infection, CXCR3 chemokine receptor is highly expressed on the surface of CD8+ T-lymphocytes. Here, we hypothesized that CXCR3 is a key molecule for migration of parasite-specific CD8+ T-cells towards infected tissues, where they may play their effector activities. Using a model of induction of resistance to highly susceptible A/Sn mice using an ASP2-carrying DNA/adenovirus prime-boost strategy, we showed that CXCR3 expression was upregulated on CD8+ T-cells, which selectively migrated towards its ligands CXCL9 and CXCL10. Anti-CXCR3 administration reversed the vaccine-induced resistance to T. cruzi infection in a way associated with hampered cytotoxic activity and increased proapoptotic markers on the H2KK-restricted TEWETGQI-specific CD8+ T-cells. Furthermore, CXCR3 receptor critically guided TEWETGQI-specific effector CD8+ T-cells to the infected heart tissue that express CXCL9 and CXCL10. Overall, our study pointed CXCR3 and its ligands as key molecules to drive T. cruzi-specific effector CD8+ T-cells into the infected heart tissue. The unveiling of the process driving cell migration and colonization of infected tissues by pathogen-specific effector T-cells is a crucial requirement to the development of vaccine strategies.


Subject(s)
Adenovirus Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Chagas Cardiomyopathy/immunology , Chemotaxis, Leukocyte , Myocardium/metabolism , Receptors, CXCR3/metabolism , Trypanosoma cruzi/immunology , Animals , Apoptosis , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/prevention & control , Female , Heart/parasitology , Ligands , Mice , Mice, Inbred C57BL , Myocardium/immunology , Receptors, CCR2/metabolism , Spleen/immunology , Up-Regulation , Vaccines, DNA/immunology
19.
Front Immunol ; 10: 1257, 2019.
Article in English | MEDLINE | ID: mdl-31244833

ABSTRACT

Chronic Chagas disease cardiomyopathy (CCC) is a major cause of heart disease in Latin America and treatment for this condition is unsatisfactory. Here we investigated the effects of BA5, an amide semi-synthetic derivative betulinic acid, in a model of CCC. Mice chronically infected with T. cruzi were treated orally with BA5 (10 or 1 mg/Kg), three times per week, for 2 months. BA5 treatment decreased inflammation and fibrosis in heart sections but did not improve exercise capacity or ameliorate cardiac electric disturbances in infected mice. Serum concentrations of TNF-α, IFN-γ, and IL-1ß, as well as cardiac gene expression of pro-inflammatory mediators, were reduced after BA5 treatment. In contrast, a significant increase in the anti-inflammatory cytokine IL-10 concentration was observed in BA5-treated mice in both tested doses compared to vehicle-treated mice. Moreover, polarization to anti-inflammatory/M2 macrophage phenotype was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers, such as Arg1 and CHI3 in mice treated with BA5. In conclusion, BA5 had a potent anti-inflammatory activity on a model of parasite-driven heart disease related to IL-10 production and a switch from M1 to M2 subset of macrophages.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chagas Cardiomyopathy/drug therapy , Interleukin-10/immunology , Macrophages/immunology , Triterpenes/pharmacology , Trypanosoma cruzi/immunology , Animals , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/pathology , Chronic Disease , Disease Models, Animal , Fibrosis , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Macrophages/pathology , Mice , Pentacyclic Triterpenes , Betulinic Acid
20.
PLoS Negl Trop Dis ; 13(5): e0007413, 2019 05.
Article in English | MEDLINE | ID: mdl-31145733

ABSTRACT

Chagas disease, caused by the parasite Trypanosoma cruzi, develops into chronic Chagas' cardiomyopathy in ~30% of infected individuals, characterized by conduction disorders, arrhythmias, heart failure, and even sudden cardiac death. Current anti-parasitic treatments are plagued by significant side effects and poor efficacy in the chronic phase of disease; thus, there is a pressing need for new treatment options. A therapeutic vaccine could bolster the protective TH1-mediated immune response, thereby slowing or halting the progression of chronic Chagas' cardiomyopathy. Prior work in mice has demonstrated therapeutic efficacy of a Tc24 recombinant protein vaccine in the acute phase of Chagas disease. However, it is anticipated that humans will be vaccinated therapeutically when in the chronic phase of disease. This study investigates the therapeutic efficacy of a vaccine prototype containing recombinant protein Tc24, formulated with an emulsion containing the Toll-like receptor 4 agonist E6020 as an immunomodulatory adjuvant in a mouse model of chronic T. cruzi infection. Among outbred ICR mice vaccinated during chronic T. cruzi infection, there is a significant increase in the number of animals with undetectable systemic parasitemia (60% of vaccinated mice compared to 0% in the sham vaccine control group), and a two-fold reduction in cardiac fibrosis over the control group. The vaccinated mice produce a robust protective TH1-biased immune response to the vaccine, as demonstrated by a significant increase in antigen-specific IFNγ-production, the number of antigen-specific IFNγ-producing cells, and IgG2a antibody titers. Importantly, therapeutic vaccination significantly reduced cardiac fibrosis in chronically infected mice. This is a first study demonstrating therapeutic efficacy of the prototype Tc24 recombinant protein and E6020 stable emulsion vaccine against cardiac fibrosis in a mouse model of chronic T. cruzi infection.


Subject(s)
Antibodies, Protozoan/immunology , Chagas Cardiomyopathy/immunology , Protozoan Vaccines/administration & dosage , Animals , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/pathology , Chagas Cardiomyopathy/prevention & control , Disease Models, Animal , Female , Fibrosis , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Mice, Inbred ICR , Myocardium/pathology , Parasitemia/immunology , Parasitemia/parasitology , Parasitemia/pathology , Parasitemia/prevention & control , Protozoan Vaccines/immunology , Th1 Cells/immunology , Trypanosoma cruzi/immunology , Trypanosoma cruzi/physiology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...